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Abstract. Many current recognition systems use constrained search to
locate objects in cluttered environments. Previous formal analysis has shown
that the expected amount of search is quadratic in the number of model and
data features, if all the data is known to come from a single object. but is
exponential when spurious data is included. If one can group the data into
subsets likely to have come from a single object. then terminating the search
once a -'good enough'interpretation is found reduces the expected search to
cubic. Without successful grouping, terminated search is still exponential.
These results apply to finding instances of a known object in the data. In
this paper, we turn to the problem of selecting models from a library, and
examine the combinatorics of determining that a candidate object is not
present in the data. We show that the expected search is again exponential,
implying that naive approaches to indexing are likely to carry an expensive
overhead, since an exponential amount of work is needed to weed out each
of the incorrect models. The analytic results are shown to be in agreement
with empirical data for cluttered object recognition.

Acknowledgments: This report describes research done at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Technology. Support for the
laboratorv's artificial intelligence research is provided in part by an Office of Naval
Research University Research Initiative grant under contract N00014-86-K-0685.
and in part by the Advanced Research Projects Agency of the Department of De-
fense under Army contract number DACA76-85-C-0010 and under Office of Naval
Research contract N00014-85-K-0124. The author is supported in part by the Mat-
sushita Chair of Computer Science and Engineering, and by NSF contract numlber
I RI-8900267.

@.Massachusetts Institute of Technology 1989.

@0



0

1 Preview of results and their implications.

This paper considers the problem of identifying and localizing an instance
of a known object in noisy sensor data taken from a cluttered environment.
Most current approaches to this problem utilize some type of search process,
finding interpretations of the data by identifying pairings of data features to
model features that are consistent with a rigid transformation of the object
model into sensor coordinates. There are many variations on this approach,
including hypothesize and test methods [e.g. Lowe 1985, 1987, Ayache &
Faugeras 1986, Huttenlocher & Ullman 1987, Huttenlocher 1989], maximal
clique methods [e.g. Bolles & Cain 1982] and constrained tree search methods
[e.g. Grimson & Lozano-Pdrez 1984, Yq87, Gaston & Lozano-Pdrez 1984,
Murray 1987a, 1987b, Murray & Cook 1988, Drumheller 1987, Knapman
1987].

For all o:" these approaches, it is convenient conceptually to break the
problem into three parts:

1. Selection: Given a set of data features, extract (nossibly overlapping)
subsets that are likely to have come from a single object.

2. Indexing: Given a library of possible objects, select a subset that are
likely to be in the scene, perhaps as a function of the selected data
subsets.

3. Correspondence: For each subset from the selection step, and for
each corresponding object from the indexing step. determine if a match
can be found between a subset of the data features and a subset of the
model features, consistent with a rigid transformation of the object.

For the case of constrained tree search methods, previous work [Grim-
son 1989a. 1989b] has analyzed the complexity of different aspects of these
problems. In particular. the following results have been established:

1. If all of the data are known to have come from a single object, the
expected amount of search required to find a correct interpretation is
quadratic in the parameters of the problem. This corresponds to the
case in which both selection and indexing work perfectly.

2. If spurious data are allowed, the expected amount of search is bounded
above and below by expressions exponential in the problem size. This
corresponds to the case in which indexing works perfectly, but selection
does not or is not used.

0



3. If the search is terminated once an interpretation that is "good enough"
is found, then the expected amount of search is bounded below by an
expression cubic in the problem parameters, and and above by an ex-
pression that is exponential, if the scene clutter is too large, but is
quartic if the scene clutter is small enough. Note that a definition
of what consistitutes "good enough" can be derived from first princi-
ples [Grimson & Huttenlocher 19891. This corresponds to the case of
perfect indexing and adequate, but not perfect, selection.

These results basically imply that in the case of constrained search if
a selection process produces adequate (but not necessarily perfect) group-
ings of the data, then the complexity of the recognition process drops from
exponential to low order polynomial.

All of these results have assumed that the indexing part of the problem
has been solved, so that we are only seeking instances of objects that are
known to be in the data. What happens when the indexing stage provides
candidate objects that are not, in fact, present in the scene? For example,
suppose we have L objects in our library. Naive approaches tn indexing
simply assume that we can sequentially test each library object for possible
interpretations, keeping those model-data matches that are consistent, and
discarding the others. Such approaches assume that the cost of deducing
that a candidate object is not in the scene is no worse than the cost of
identifying an instance of an object, and that both costs are low. While
our earlier results show that finding correct interpretations can be done
efficiently, it is not clear that the same cost applies to deducing that an
object is not present. especially since the use of terminating search was
essential to the reduction in complexity. In this article, we show that the
expected amount of search needed to deduce that the object is not in fact
present is exponential. even when termination of the search is allowed.

Although the actual amount of search is reduced when coupled with
good selection (or grouping) mechanisms, the search remains exponential
even in this case. This suggests that straightforward approaches to indexing
(e.g. linear scanning of the library, or simple voting schemes) will not scale
well with increases in library size. as the cost of searching large portions
of the library will increase drastically with increase in library size. Hence,
some care must be given to the indexing problem in scenarios involving large
libraries.

As with any formal analysis. we make several simplifying assumptions in
order to derive tractable results. To verify that these assumptions have not
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significantly altered the problem, we perform several tests. First, we have
compared the actual number of points that are theoretically searched against
the order of growth bounds we have derived. We find that the bounds do
correctly bound the actual number, and that the true number is much closer
to the lower bound. Second we have applied a real recognition system to a

series of real images and recorded the amount of search expended. We find
that the median number of nodes searched is in close agreement with the
predicted number and with the derived lower bound. We use this to conclude
that our formal analysis is of relevance to the original problem, and hence
that incorrect indexing into a library of models carries an exponential cost.

in the case of constrained ser-ch problems.

2 The constrained search model.

To determine the expected cost of recognizing objects, we first establish the

search framework to be used in solving the recognition problem. We then
review results from earlier analysis of the constrained search method. before
deriving new results on the role of indexing.

We begin by reviewing the constrained search method, used previously in
[Grimson & Lozano-P6rez 1984, 1987. Gaston &, Lozano-Prez 1984, Murray
1987a, 1987b, Murray & Cook 1988, Drumheller 1987. Knapman 1987] as

a basis for recognizing and locating objects. This approach seeks to match
data features to model features in a manner that is consistent with some
rigid transformation of the model into the sensory data. We assume that our
models are represented by sets of geometric features, such as edges. distinc-
tive points, surface patches, axes of cylinders. etc., and that the sensory data
has been processed to obtain similar features. There are many methods for
finding matches between such features, the approach taken here is to explore
the space of possible correspondences by searching a tree of interpretations.

This tree search can be defined as follows. Suppose we order the data
features in some arbitrary fashion. We select the first data feature, and
hypothesize in turn that it is in correspondence with each of the model
features. We represent this set of alternatives as a set of nodes at the same
level of a tree (see Figure 1).

Given each one of these hypothesized assignments of data feature fi to a
model feature, F,.j = 1 ..... m. we turn to the second data feature. Again,
we can consider all possible assignments of the second data feature f 2 to

model features, relative to each of the assignments of the first data feature.
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Figure 1: We can build a tree of possible interpretations, by first consider:ng
all the ways of matching the first data feature, fl, to each of the mouel
features, F,j = 1,...,m.

This is shown in Figure 2. Note that the entire set of nodes in the second
level of the tree corresponds to all possible matches for the first two data
features.

We can continue in this manner, adding new levels to the tree, one for
each data feature. A node of the interpretation tree at level n describes a
partial n-interpretation, in that the nodes lying directly between the current
node and the root of the tree identify an assignment of model features to the
first n data features. Any leaf of the tree defines a complete s-interpretation.
where s is the total number of data features.

Our goal is to find consistent k-interpretations, where k is as large as
possible, k < s, and to find these interpretations with as little effort as pos-
sible. A simple-minded method would examine each leaf of the tree, testing
to see if there exists a rigid transformation mapping each model feature into
its associated data feature. This is clearly too expensive, as it simply reverts
to an exploration of t~e entire, exponential-size. search space. A better so-
lution is to explore the interpretation tree. starting at its root. and testing
interpretations as we move downward in the tree. A- 3oon as we find a node
that is not consistent, i.e. for which no rigid transform will correctly align
model and data feature, we terminate any further downward search below
that node, as adding new data-model pairings to the interpretation defined
at that node will not turn an inconsistent interpretation into a consistent
one.

In testing for consistency at a node. we have two different choices. We
could explicitly solve for the best rigid transformation, and test that all of
the model features do in fact get mapped into agreement with their corre-
sponding data features. This approach has two drawbacks. First, computing
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Figure 2: For each pairing of the first data feature with a model feature, we
can consider matchings for the second data feature with each of the model
features. Each node in the second level of the tree defines a pairing for the
first two data points, found by tracing up the tree to the nodes. An example
is shown.

such a transformation is generally computationally expensive (however, see
[Faugeras & Hebert 1986, Ayache &: Faugeras 1986] for an efficient method
for updating transformations), and we would like to avoid any unnecessary
use of such a computation. Second, in order to compute such a transforma-
tion, we will need an interpretation of at least k data-model pairs. where
k depends on the characteristics of the features. This means we must wait
until we are at least k levels deep in the tree, before we can apply our
consistency test, and this increases the amount of work that must be done.

Our second choice is to look for less complete methods for testing con-
sistency. We instead seek constraints that can be applied at any node of
the interpretation tree. with the property that while no single constraint
can uniquely guarantee the consistency of an interpretation, each constraint
can rule out some interpretattions. The hope is that if enough independent
constraints can be combined together. their aggregation will prove power-
ful in determining consistency, but at a lower cost than fully solving for a
transformation.

In previous work. we developed a set of unary and binary constraints
that can be applied to this problem [Grimson & Lozano-Prez 1984. 1987].
For example, if we are matching edge segments from a grey-level image. one
unary constraint is that the length of the data edge must not be longer than
the corresponding model edge. plus some bounded amount of error. Binary
constraints apply to pairs of data-inodel pairings. for example, the angle
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Figure 3: The tree is searched in a depth-first, backtracking manner, starting
at the root. If a node is found to be inconsistent, the downward search is
terminated, and we backtrack. Any leaf of the tree that is reached by the
search constitutes a hypothesized interpretation. The darker edges in the
diagram indicate one example of a backtracking search.

between two data edges must be roughly the same as the angle between the
corresponding model edges, and the range of distances between a pair of
data edges must be contained within the corresponding range of distances
for a pair of model edges, adjusted for error. and so on. Hence, if a unary
constraint, applied to such a pairing, is true. then this implies that the
data-model pairing may be part of a consistent interpretation. If it is false.
however. then that pairing cannot possibly be part of such an interpretation.
Binary constraints apply to pairs of data-model pairings, with the same
logic. These kinds of constraints have the advantages of computational
simplicity, while retaining considerable power to separate consistent from
inconsistent interpretations, and of applicability at virtually any node in
the interpretation tree.

Formulated in this way, our approach to recognition can be considered as
a problem of constraint satisfaction. or consistent labelling, a problem that
has received considerable attention in the Artificial Intelligence literature
[e.g. Freuder 1978. 1982. Gaschnig 1979. Haralick &, Elliot 1980. Haralick
& Shapiro 1979. Mackworth 1977. Mackworth & Freuder 1985. Montanari
1974. Nudel 1983, Waltz 1975]. When we analyze the performance of our
method, we will use results from this literature to guide our development.

To use these constraints, we must now specify a means of exploring the
interpretation tree. We do this using back-tracking depth-first search. (See
Figure 3.) That is. we begin at the root of the tree, and explore downwards
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along the first branch. At each node, we check the unary constraints appli-
cable to the new data-model pairing, and we check the n - 1 sets of binary

constraints obtained by considering the new data-model pairing relative to
each data-model pairing defined by an ancestor node. If all these constraints
are consistent, then we continue downwards in the search. If one of them is
inconsistent, we backtrack to the previous node. We then explore the next
branch of that node. If there are no more branches, we backtrack another
level, and so on. Note that the number of constraints increases as we go
lower in the tree, and hence the likelihood that a consistent interpretation
is in fact globally consistent increases.

If we reach a leaf of the tree, we have a possible interpretation of the
data relative to the model, which we can verify by solving for a rigid trans-
formation and testing that it does take all of the model features into rough
agreement with their associated data features. Even if we do reach a leaf of
the tree, we do not abandon the search. Rather. we accumulate that pos-
sible interpretation, back-track and continue, until the entire tree has been
explored, and all possible interpretations have been found.

As described, our search method wili succeed only when all of the data
features come from the object of interest. In general, object recognition
must also work in the presence of clutter in the scene, in which much of the
object may be hidden from view, and in which much of the data is spurious,

c,,,ing - ther objec:s. The tree ,carch mothod can ho traightforwardlv
extended to handle this bv introducing into our matching vocabulary a new

model feature, called a null character feature. At each node of the inter-
pretation tree, we add as a last resort an extra branch corresponding to
this feature (see Figure 4). This feature (denoted by a * to distinguish it
from actua model features F ) indicates that the data point to which it is
matched is to be excluded from the interpretation, and treated as spurious
data. To complete this addition to our matching shenie. we must define
the consistency relationshils between data-model pali'lirgs involving a nill
character match. Since the data point is to be exclided, it cannot affect
the current interpretation, and hence any constraint involving a data point
matched to the null character is deemed to be consistent.

3 Previous results

This method has been used for recognition in a variety of domains [Grimson
Lozano-Perez 1984. 1987. Gaston & Lozano-P6rez 1981. Murray 1987a.
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fi.

Figure 4: The interpretation tree can be extended by adding the null char-
acter * as a final branch for each node of the tree. A match of a data feature
and this character indicates that the data feature is not part of the current
interpretation. In the example shown, the simple tree of Figure 2 has been
extended to include the null character.

1987b, Murray & Cook 1988. Drumheller 1987]. Our empirical experience
is that the method is was very efficient when all of the data features are
known to have come from a single object. When spurious data is included.
however, the method slows down by several orders of magnitude. If methods
for preselecting subspaces of the search space. such as the generaiized Hough
transform [Ballard 1981]. are added, the method improves in efficiency. By
picselection. we mean that only some subset of the possible data-model
pairings are used in the search process, and typically such subsets are ciosen
based on an expectation that they give rise to similar transformations of the
model. If premature termination is added (i.e. halting the search process
as soon as an interpretation that is "good enough" is found). the methId
improves even further.

In earlier combinatorial analyses [Grimson 1989a. 1989b], we showed
that these empirical observations were supported by formal analysis. The

main points of this analysis are summarized below.

1. When all of the data features are known to have come from a single
object, the number of interpretations is generally asymptotic to 1.

2. When only c of the .s data features come from an object with n7 model
features, the number of interpretations it; is bounded above by an

0



expression of order

O(n;) = 2c + [1 + a]' + 2,,n[1 + P2]C

where P2 is the probability of a pair of random data-model pairings
satisfying binary consistency, and a is a small (< 1) constant that
depends on the object characteristics and the amount of noise in the
measurements. The number of interpretations is bounded below by an
expression of order

o(n,) = 2c + [1 + .3]3 + 2ms[l + P2].

3. The expected probability of two random data-model pairings being
consistent P2 is given by

P2 1
where K is a constant (usually less than I) that can be derived from
properties of the object and noise characteristics. The appendix pro-
vides details.

4. If all s sensory measurements are known to lie on a single object with
m equal sized features, the sensory data is distributed uniformly, and if
the noise is small enough, then the expected amount of search needed
to find the interpretation is bounded by

/" < \, < in 2 + am.s

where a is a coistant that depends onl the object characteristics and
the alolit of lnoise ill tile sellsorY Illeasurollents.

5. If cO of the ., sensory neasu reuneui lie on an object with ill equal sized
features. tlie sensory data is distributed uniform lv. and it the noise is
small vioughi, tlie t Hie expected aunolllT uot search uiee(hed to id Ilhe
initerpretatiou,. is bounded above bY all exp ressioni of order

o(Nx ) = m,[I + - + ,,,.,.-1 + bi,,, + ,.S +I

and is bounded below by ain exfprossio(l of ordr

(,(.A',') = m2") + in.s

where -,.b. are constants that depend on the object characteristics
and t lie anount of sevisor llise. <.. .I
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6. If the search is terminated once an interpretation that is "good enough"
(see [Grimson & Huttenlocher 1989] for a method for defining "good
enough"), then the expected amount of search is bounded below by
an expression of order

o(W(s)) = ms-
C

and above by an expression of order

O(W (s)) = amt.- s 1  + )2

where a, K are small constants, and t is the threshold on the number

of matched data features needed to terminate the search. This implies
that if the scene clutter is small enough. i.e. selection has worked
reasonably well:

.s 2

then the search is basically cubic, while if the selection process is not
sufficient, the expected search is still exponential.

As we suggested in the introduction, these results show that constrained
search is polynomial. in fact quadratic. when all of the data is known to collie
from a single object, but is exponential when spurious data is included. One
way of reducing this exponential cost is to terminate the search as soon as ain
interpretation is found that is "good enough". in fact. reducing the cost to
cubic. All of this analysis, however, assumes that an instance of the model is.
in fact. present in the data. Our concerii in this paper is considering the cost
of deducing that an hypothesized model is not present in the data. Empirical
experience Grimson. 1989cj has shown that this cost is considerably higher
than that of identifying instancos of objects in the dala.

4 The formal model

We will derive results on the complexi ty of indexing in several steps. We
begin by defining a formal model for tle probabilitv of consistency of a node
in the tree. Given that niodel. we deriye ;.n explicit expression for the ex-
pected numbr of iiodes searched in a I ree. W,\ t hen bound this expressioli.
and use these bouids to derive siHpner order of growth bounds on tle ex-
pected search. These are summarized in the Corollaries to Propositions 1-3.

10



in which we show that the expected search is exponential in the parameters
of the problem.

We begin with the formal model for consistency. Since our method uses
both unary and binary constraints, we need to model the probability that
a data-model assignment is consistent and the probability that a pair of
data-model assignments are consistent.

Similar to our earlier analysis [Grimson 1989a], we let qi, denote the
probability that assigning the ith data element to the [th model element is
consistent, and we let qi,j;I,j denote the probability that the pair of assign-
ments i - I,j -. J is consistent. Our model of the recognition problem is
defined as follows.

For a single data-model pairing, if the pairing is part of the correct
interpretation, the probability of consistency is simply 1. Similarly, any
pairing involving the null character is consistent with probability 1. If the
pairing is not correct, we let the probability of consistency be pi. Thus, we
have

1 if I : I is correct
qj. = { if I is the null character.

p, otherwise.

For a pair of assignments, suppose we are considering a match in which
data fragments i,j are paired with model fragments 1, J respectively. We
will model the situation by saying that the consistency of this pair of pairs
has probability 1 if these pairings are part of the correct interpretation,
or if either of then is assigned to the null character. Otherwise we will
assume that the probability of consistency is P2. Note that this is essentially
assuming a random distribution of edges. It is aso assuming that pairs of
model edges are distinctive, so that objects with partial symmetries are
excluded. Thus, we have

1 if i - [.j 1- .J is correct

qi.j:i.J I if either I or J are the ill character.
P2 otierwise.

Given a partial interpretation at a node, the probability of consistency
is given by

1i qij 1- qi.j:l,j.

We can use the above definitions for q to derive an explicit expression for
the expected number of nodes in the tree.

I1



First, if there are s data features, m model features, of which co < t
are consistent with a rigid translation of the model, and the threshold on
termination of search is t, then the number of nodes searched is bounded
below by:

1: 1: (') (m 1 ir
t=1 r=O

3m 1Y<-Tt ()...(c~t))
+ 1 m ), pr-c(r,t)p )_c ,)

e=t+l r=O

e=s-t+l -=-s+t (1)

To see this, we note that for the first t levels of the tree, we must consider
all possible interpretations. Hence. we can sum over the number of real
matches (r) in the interpretation. For each different length of interpretation.
we can choose up to in - I different labels for the r matched data features,

without including a match that is consistent with a rigid transformation,

The probability of consistency of each such interpretation is given by the
probability of unary consistency for the random feature assignments

times the probability of binary consistency
(, ); )- ( Ci ')

P.)

Here, c(r, L) < co counts the number of data-feature pairings that are ac-

tually consistent, as a flunction of the level of the tree and the number of

features not matched to the wild card. For levels of the tree between t

and .s - t. we need onlv consider intorpretations of lengti at most t. since

any longer intrpretation would previously' have resulted in an interpreta-

tion of zufficient length to terminate the search. Finilly. for levels of the
tree between s - t and s. we need only consider interpretations of sufficient

length such that continuing dowinward in the search might possibly lead to
an interpretation of length t.

In the appendix we show hat the following lower bound oi equation ( 1):

Proposition 1: If the co data featires (out of a total of.4 data features)

consistent with a model with in features are uniformly distributed with

1'2



density b = ., then the expected amount of search for the case of an
incorrect object model is bounded below by

PlP2[(s t 1 [1 + t +

where
36- 1+t(11-621

V = (m- 1)p 6 p2 2

and where pi is the probability of unary consistency and p2 is the probability
of binary consistency, and where t is the threshold on the number of model
features in a match sufficient to terminate the search.§

A simpler version, under the assumption of uniformly distributed data
is given by the following corollary.

Corollary 1.1: If s > t and the data are uniformly distributed in
transform space, then the lower bound on the expected search is roughly

M 2 
[/Vs-2]

* K2 ~W(2)

where nc is a small constant.|

The main implication of this result is that using these search methods
to deduce that a candidate object from the library is not in the data is
expected to be an exponential search. Note that typically t is some fraction
of m. the number of model features, so that the power of the exponent is
considerably reduced from the straightforward British Museum algorithm's
search. In fact, previous analysis has shown that one can define the threshold
t as a function of the model characteristics, the noise in the system and the
number of data and model features [Grimson and liuttenlocher. 1989]. In
the limiting case of large numbers of features, t is a linear function of both
s and m.

Note that the role of selection is intertwined with the role of indexing in
this analysis. Good selection methods will reduce the size of ., and hence
both the size of the largest exponential term. and the power t. On the
other hand. using indexing with no selection will result in a larger cost for
deducing that a candidate object is not present.

1:3



Since the expected search is bounded below by an expoILential, we expect
it to also be bounded above by one, a result we establish below.

To get an upper bound we use

.(\mrpr-c(r,e)2 2
: E (r) p1  p2e=1 r=O

+ ± () -rpr-c(re) P2
e=t-kl r=O()

--s t+ 1 r= e- s+ t

Using this, we derive the following result.

Proposition 2: If the co data features (out of a total of s data features)
consistent with a model with m features are uniformly distributed with
density 6 = , then the expected amount of search for the case of an
incorrect object model is bounded above by

[+ )ff' +31 +(s -[+] + t-

where

3 = , P I ' P - - -

and where Pi is the probability of unary consistency and p- is the probability
of binary consistency, and where t is the threshold on the iiumber of model
features in a match sufficient to terminate the search.I

Corollary 2.1: If .s > t and the data are uniformly distributed in
transform space, then the tipper bound on the expected search is roughly((4)(;) fl (4)

Proofs of these results are found in the appendix.

14



The previous two propositions dealt with bounds on the expected search,
where the data actually consistent with the model are uniformly distributed
among the spurious data. More absolute bounds, without this assumption,
can also be derived. In the case of lower bounds, we simply set 6 = 0 to
handle the worst case distribution. For the upper bound, we need to use
6 = min {1, 91} in a similar derivation to get the worst case distribution.

5 Implications of the results

The main conclusion from the above analysis, of course, is that incorrectly
extracting candidate models from a library to match a set of sensor data
is costly. While we have established this for the case of constrained search
approaches to recognition. it is likely to hold for other approaches as well.
While in some sense this is an obvious conclusion, it is important to es-
tablish formal bounds on the complexity of discarding incorrect models in
a recognition task. Our results demonstrate that this cost is exponential,
while our earlier results have shown that correct models can be identified
in data in low order (cubic) polynomial time. if one has adequate selection
methods available, and one terminates search once a -good" interpretation
is found.

Corollary 1.1., which establishes a rough lower bound on the expected
search, has an exponential whose power is the threshold t and whose base
is 1 + E where E is generally a small number. Since the threshold generally
depends linearly on s [Grimson and Huttenlocher 1989], this bound will
be reduced is indexing is coupled to selection. that is. if we can reduce
the effective number of data points that are considered, we can reduce the
necessary threshold. and hence the lower bound on the expected search. At
the same time. Corollary 2.1 will also be reduced with a reduction in s. and
hence, also improves when indexing is coupled with selection. Although the
expected cost in rejecting an incorrect model is still exponential in this case.
the reduction in the size of that cost may still be important for practical
recognition systems.

5.1 Consistency of the formal results

Since we have made a number of assumlptions in deriving our bounds on
indexing complexity. it is important to obtain independent verifcation of the
consistency of the derived results. We have done this in two ways. First, we
have computed the actual combinatorial sums of equations (1) and (3), which
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Figure 5: A graph of the log of the number of nodes searched, for fixed error
and number of sensory points, as the number of model points increases.
The bottom graph shows the lower bound of Proposition 1, the upper graph
shows the upper bound of Proposition 2. and the middle graph is actually
two graphs of the sums of equations (1) and (3), which on this scale are
indistinguishable.

count the number of nodes searched, and compared them with the bounds
of the two propositions, for a variety of values for the problem parameters.
'We find that in all cases, the lower and upper bounds on the expected search
do, in fact, bound the actual sums. In general, the actual sums are closer to
the lower bound of Proposition 1 than to the upper bound of Proposition 2.
We graph some representative examples in Figures 5 and 6. In Figure 5, we
keep the error and the number of sensory data features fixed, and vary the
number of model features. In Figure 6. we keep the error and the number
of model features fixed. and vary the number of data features.

To further demonstrate the relevance of the results derived here, we
also compare the predictions of the analysis with data obtained from real
examples. In particular, we selected a set of representative cluttered images,
all of which excluded an instance of a known object, and extracted a set
of features from the image. We then applied the RAF [Grimson & Lozano-
P6rez 1984, 1987] recognition system to the resulting data. The threshold on
terminating the search was set automatically using the analysis of [Grimson
&- Huttenlocher. 1989]. We counted the actual number of nodes searched in
each case, and compared them to the predictions of the analysis presented
here. In Figure 7, we plot the predicted number of nodes searched, the
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Figure 6: A graph of the log of the number of nodes searched, for fixed error
and number of model points, as the number of sensory data points increases.
The bottom graph shows the lower bound of Proposition 1, the upper graph
shows the upper bound of Proposition 2. and the middle graph is actually
two graphs of the sums of equations (1) and (3), which on this scale are

indistinguishable.

derived bounds on that number, and the observed number of nodes searched,

all as a function of the number of sensor features. Of course, there are

other factors that influence both the actual and predicted search required,
including the amount of-occlusion and the particular arrangement of data

features. These graphs are simply intended to display the statistics of the

test in a convenient form. We find that the actual search is smaller than

the numbers predicted by equations (1) and (3). and lies close to the lower

bounds of Proposition 1. This in part reflects the fact that while the analysis
is based on models with equal length edges. and on a uniform dis ribution

of edges in the images, the actual model had edges of varying lengths, and
the image bedges were not necessarily uniformly distributed. Nonetheless.

as indicated in Figure 7. the recorded search on real data is in reasonable

agreement with the predictions of the formal analysis.
From these tests, we can conclude that the assumptions made in deriving

our formal analysis are in reasonable agreement with actual practise and

hence are of relevance in judging the impact of premature termination on

constrained search.
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Figure 7: A graph of the log of the number of nodes searched, based on data
from real images, as a function of the number of sensor features. The b,tton1
graph shows the lower bound of Proposition 1. the upper graph shows the
upper bound of Proposition 2. The graph second from the bottom is the
actual number of nodes searched, while the graph second from the top is
actually two graphs of the sums of equations (1) and (3), which on this scale
are indistinguishable.

6 Conclusion

As a consequence. the main conclusion we can draw is that the cost of re-
jecting a candidate model from a library is exponential, at least for the class
of recognition algorithms based on constrained search. That cost is reduced
when indexing is coupled with selection methods. but remains exponential
even in this case. In contrast. correctl, identifying an instance of a model.
when coupled with selection methods, is cubic in the size of the problem
parameters. This implies that simple indexing methods will not scale well
with increases in the size of the library, and that some effort must be given
to finding efficient ways of selecting candidate library models that are highly
likely to be consistent with selected subsets of the sensory data.
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8 Appendix

In this appendix, we present formal proofs of the propositions stated in the
main text.

We begin with a result from earlier analysis [Grimson, 1989a] that is of
use in deriving the new results. (Note that the number of the proposition
refers to the number used in that article.)

In particular, to obtain order of magnitude expressions on the amount of
search required to find the interpretations, we need to relate the probability
of consistency to aspects of the problem. We established that the probability
of consistency is inversely proportional to the number of model features, for

a fixed amount of sensor noise and a fixed size object model:

Proposition 3 [Grimson, 1989a]: Given a two dimensional object
with m equal sized edges of length L, and given sensory data that is dis-
tributed uniformly in transform space with a uniform distribution of lengths.
the expected probability of two random data-model pairings being consis-
tent, P2, is given by

* P2= 2
where

= = ~ HE)2 + 2q;( 1 - It-)] + /,E, ( -)2

in the worst case. and

)2 +- + sil ILh2)

in the uniform distribution case. and where c., is a bound oil the error in
measuring orientation. E1 is a bound on the error in measuring position. h
is the minimum length data edge. c- I P is the perimeter of
the object, and D is the dimension (width) of the image.1

To illustrate the range of values for this constant. in Table 1, we list the
values for K for a range of values of c and a range of values of P/D. We fix
h' = 2c; and c, = tan - 1 2(;. As expected, the constant K, increases with
increasing noise, and as the size of the object increases.
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P/D= fl.125 .25 .5 1 2 4 8
S.01 .002 .004 .008 .016 .033 .065 .131

,;=.1 .021 .042 .085 .169 .338 .677 1.354
__ =.5 j .111 .222 .443 .886 1.772 3.545 7.090

Table 1: Values for the constant , for a range of values of c; and a range
of values of P/D. We fix h" = 2e and E = tan -1 2c;.

We now present the proofs of the propositions from the text:
First, if there are s data features, m model features, of which co < t

are consistent with a rigid translation of the model, and the threshold on
termination of search is t, then the number of nodes searched is bounded
below by:

I), P1-~. P 2 '

e=l r=O

1 '2

e=t+l r=O ti

+ E s () n - I)rpl -P2 (5)
e=s-t+l r= -s-t()

To see this. we note that for the first t levels of the tree, we must consider
all possible interpretations. Hence, we can sum over the number of real
matches (r) in the interpretation. For each different length of interpretation,
we can choose up to m - I different labels for the r matched data features.
without including a match that is consistent with a rigid transformation.
The probability of consistency of each such interpretatioll is given by the
probability of unary consistency for the random feature assignments

P1

times the probability of binary consistency

P2

Here, c(rC) < co counts the number of data-feature pairings that are ac-
tually consistent, as a function of the level of the tree and the number of
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features not matched to the wild card. For levels of the tree between t
and s - t, we need only consider interpretations of length at most t, since
any longer interpretation would previously have resulted in an interpreta-
tion of sufficient length to terminate the search. Finally, for levels of the

tree between s - t and s, we need only consider interpretations of sufficient
length such that continuing downward in the search might possibly lead to
an interpretation of length t.

Since we are mostly concerned with expected comple.-'y, we wiH focus
on the case in which the consistent data is uniformly distributed among the
spurious. In this case, we will assume that

c(r.e) == [6J

where
co

6=-
.S

is the density of consistent data features. Note that we can assume co < t

since otherwise we would have a false positive response from our recognition
system, and we have assumed that the threshold t has been set sufficiently
high to prevent this.

We will first establish the following result:

Proposition 1: If the co data features (out of a total of s data features)
consistent with a model with in features are uniformly distributed with
density 6 = -- then the expected amount of search for the case of an
incorrect object model is bounded below by

PIP2 1 [(8-t+ +) [T- + t

where

I= (i- )Pll - p  2

and where p, is the probability of unary consistency and P2 is the probability

of binary consistency. and where t is the threshold on the number of model
features in a match sufficient to terminate the search.1

Proof: We begin by simplifying the summations in equation (5), using

our assumption about c(r.C):
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(in- ) p 2  )_tl

t=1 r=O

+ Z .I _ Ip r 'r ? 2 2
r_1t= t-t- r=O

+ E -E (e) (M- )r pr- rJp(' ) - ( 2 J) (6)
e=,q-t+l r=t-s r1t

Consider the first summation in equation (6). We can simplify it by
observing that

x - I < Lx] < x

so that this sum is bounded below bv

(In l>p- ' p; -( T
1 P2

C=1 r=.,

We can expand out the exponent for the p2 term:

( 1) -( 6 1. 1 =- r (b , 2 + U r 2
2 2 2

and since p2 < 1. we cail replace its exponent with a larger exponent so that
the first summation in equation (6) i bounded below by:

i'=j r=O

A similar reduction can be performed on the other two summations in equa-

tion (6).
We let

= fm - 1 )pP, 2

Since e < t in the first sum. we have as a lowor bound for the summation
parts of equation (6):

± ) + ( "+j ( . (7)
f=l r=O I=t+l r=O i=s-t+1 r=i-s+1
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Since we are seeking a lower bound, we can drop the third summation in
equation (7). We can use the following derivation on the second summation:

=t (1 (=) 0 =0

where we have used a standard combinatorial identity on the first term in
the expansion (Graham. et al. 1989].

This reduces our lower bound to

('I)= r=O ( i=0 r=O

We consider the second term first. Expansion leads to:

1( .+ ) (s-r- l). t(t-r+ 1)(r+ 1)r!(t- r)!

Since _I (I - 1

b-b-i

for positive i provided b < (1. we can bound tie above sum with the following
smaller expression:

t t+ 1 (-t + 1)-s ). +2
Er+ t) I 1). (t+1) r

Bv cancelling oui t ternis. and not in hat t lie worst c ase for 1 )/ r i ) =
this reduces to

and Vandermonde's relation then reduces this to

(<2 1>1 + '. (9)

Now we consider the remaining two tenms in equation (8):

r ot = 1 r=O r=1
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Cancelling common terms leads to

Q=4 (E r r 01=1 rmt+ l () r=O

and only the r = 0 term in the second summation survives. yielding -1.
Combining this with equation (9), and the constants that we have dropped

while concentrating on the summation part of equation (6), yields the de-
sired result.I

Corollary 1.1: If s > t and the data are uniformly distributed in
transform space. then the lower bound oil the expected search is roughly

M - 1±-1 (10)K , +, ) I t

where K is a small constant.|

Proof: We can simply use Proposition :3 of [Grinsou. 1989a] to replace

P[•

The remaining simplifications follow.1

To get an upper bound we usp

+ 1 2

As in the lower bound scca.e, ic were eiost lv col cerlied wili oxpected
complexity, we will focus on the case in wh ich the cowsistent data is un1ii-
formlv distributed a nioiig tile spiiious. As before. we will asi.,me that

( r. t ) = LI-]

2-1



where
CO

8

is the density of consistent data features. Note that we can assume c < t
since otherwise we would have a false positive response from our recognition
system, and we have assumed that the threshold t has been set sufficiently
high to prevent this.

With this, we have the following characterization of the expected search:

tj e r e~ LT P(r)( L

+ -- L-1 1  p2

e=1t-- r=O )

(I) PL "P) (12)

e=s-t+ I r=t-s+t

Using this, we derive the following result.

0Proposition 2: If the co data features (out of a total of s data features)
consistent with a model with I. features are uniformly distributed with
density 6 = , then the expected amount. of search for the case of an
incorrect object model is bounded above by

[1+01+ - [1 + 31 + 1 / 1
31 y: t S +.- t + 1))

where

'J = I -l P

and where pi is the probability of unary consistency and P2 is the probability
of binary consistency, and where t is the threshold on the number of mod _i
features in a match sufficient to terminate the search.I

Proof: Similar to our proof of Proposition 1. we can replace [irJ with br
in equation (12). In this case. we replace the exponent for P2 with a smaller
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expression linear in r, specifically 2 This leads to the following upper
bound on equation (12).

_ ± ~~~(C) or ~>* (3
_= r r=O = r0 r=-t+ -

We can bound the second and third term from above by combining them
into

(' ) + ±() . (14)
e=I r=O e-=t+l r=O

The first term of equation (14) reduces to
[ +J.3]+1 -[1 + 3 (15)

3

by applying the binomial theorem and the reduction for geometric series.
We can expand out the second term in equation (1-) as

±()) = C__ __ 1) ... (t + ____

= (e - 7')(C - r - 1) (t - r + 1)(t -r!r!

This can be bounded above by:

t+/ I t 2 t+i 1
r=o t + -r t +2 r t +i-r7 t+ i-r l

and the worst case for this is when r = t. yielding (together with the binomial
theorem):

(t+ 1) (2) i + 1 [1 + 3]. (16)

Returning this to the second term in equation (14). we have an UlIpper bound
on that term of

t +i! t+i +--' [1 + 3 t.

=t+l +

Now the choice of i is arbitrary. that is the choice of the number of terms of
the expansion to pull out is open, subject to I < i < . - t. In fact, the best
bound occurs for i = s - t. and substitution leads to

[1 + .3]t (. - ) + s
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and application of the geometric series formula leads to

[1+,1 (S) S-t + 1 ((1 + t ) - (1+ t )t+1-3 (17)

Combining equation (17) and equation (15), plus some simplification,
completes the result.fl

Corollary 2.1: If s > t and the data are uniformly distributed in
transform space, then the upper bound on the expected search is roughly

(S) () mt.(18)

Proof: We can simply use Proposition 3 of [Grimson, 1989a] to replace

P2

The remaining simplifications fol lovw I
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